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Liang studied three classes of irrotational dust collapse models with high 
symmetries. Here the charged analogs of the models with spherical and plane 
symmetry are considered. Contrary to Liang's result that the plane-symmetric 
model with positive mass cannot have a static exterior we find that the 
corresponding charged model may have bounce and a static exterior. 

1. INTRODUCTION 

Exterior solutions for the plane-symmetric Einstein equations were 
obtain by Taub (1951). Takeno (1960) and others studied the gravitational 
wave equations. Exterior solutions of Einstein-Maxwell equations exhibit- 
ing plane symmetry were developed by Patnaik (1970) and Letelier and 
Tabensky (1974) for static and nonstatie eases, respectively, while the 
interior solution was obtained by Humi and Le Britton (1975). Liang 
(1974) discussed the gravitational collapse of three cases of highly symmet- 
ric, but  inhomogeneous models: spherical, plane, and cylindrical. The 
interior solutions were joined smoothly with the respective exterior ones. 
The plane-symmetric model was found to have either negative gravitating 
mass and bounce or had no static exterior. The plane-symmetric model 
may be of interest in the theory of galactic structure, which involves both 
matter and electromagnetic field. We therefore thought it worthwhile to 
study the evolution of the plane-symmetric model in the presence of an 
electromagnetic field. Our solution may be treated as the charged analog 
of Liang's solution. When one of the factors in our metric vanishes it 
reduces to Liang's charge-free solution. Liang had to make the unphysical 
assumption of negative mass in order to get a static exterior. But in the 
presence of electromagnetic field such an assumption is not necessary. The 
plane-symmetric solution is discussed in Section 2. 
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In Section 3 the charged analog of the spherical model is discussed 
briefly for comparison. The external field is just the Reissner-Nordstr6m 
solution (1916) and this case has already been studied in detail by various 
authors (Bardeen, 1968; Novikov, 1967). The charged dust distribution 
cannot collapse into the singularity R = 0  because the repulsive electro- 
static force ultimately overcomes the attractive force as R decreases. The 
sphere reaches a minimum volume inside the inner horizon and reexpands 
into another asymptotically flat universe. 

2. THE PLANE-SYMMETRIC SOLUTION 

In comoving normal coordinates the plane-symmetric line element 
may be taken as 

ds z = dt 2 -  e2* dz 2 -  a2( dxZ + dy 2) (2.1) 

where 6 = 4,(z, t), a = a(z, t), and 

( x' ,x 2,x x,y,z,t) 

u ~ = 6~ (dust flow velocity) 

The Einstein-Maxwell equations we discuss are 

O."= - 8,~(r~ + E D (2.2) 

Tf  = ou~u~ (2.3) 

E f  = 16fF, pF~,~_ F~,,~F~, (2.4) 

F~=47rJ~';F[~,,;,~I=O , J~'= o(x'~)6~ (2.5) 

where all symbols have the usual meaning (we have taken G = c = 1). 
If it is assumed that F,,  and J "  carry the same plane symmetry as the 

metric, then the only nonvanishing components of F w are 

c2(z)eq" (2.6) 
El2=  C I, F43= o~2 

where c I is a constant and c2 is a function of z alone. 
The only nonvanishing components of Ew are 

4 1  -4  2 2 EI=E2-..~.-E3=-E4-.~ol ( r162  (2.7) 
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We get corresponding to G43 = 0 

0-7 = 0  (2.8a) 

and 

e r = ~ (2.8b) k(z) 

where k(z )  is an arbitrary function of z. Taking the more general solution 
(2.8b) we get from the field equations 

kk  ' & &d ' ii" c 
0~0/p O/ 0/0~' O/t 0/4 (2.9) 

~ 2  C (2o a + , i  2 - k =) = (2.10) 

&2 2&& ' 2 k k  ' k 2 c 

OL2 + - -  . . ~ . _ _  
act' aa'  a2 a 4 +8~r 0 (2.11) 

where the prime denotes O/Oz and the dot denotes O/Ot, and e = 4~r(c~+ 
c~) is a function of z alone. The field equations (2.9)-(2.11) are not 
independent; in fact after multiplying (2.10) by a 2 and then differentiating 
with respect to z we obtain an equation which if added to (2.9) multiplied 
by 2aa'  leads to 

~C 
0--7 = 0  

Thus, c =c ons t  irrespective of whether p = 0  or Ova0. The equation (2.10) 
gives as a first integral 

1 . 2  m(z_.___)) + 
= E ( z )  (2.12) 

where m(z)  is an integration function and 

E ( z )  = ( 1 / 2 ) k 2 ( z )  >. O, c / 2  =/3 

The singularity in equation (2.8b) is still avoided when both k(z )  and 
a'(z,  t) vanish but the ratio exists. When k ( z ) =  a'(z,  t ) = 0  for all z and 
/3 = 0, we get the homogeneous flat Friedmarm universe. F rom the source 



,r c-~ttn-~ ~ mm~rli 

equation (2.11), we obtain 

8rrp= 2m'(z) 
a20/t 

whence 

m ( z )  = f  od3v + m(zo)  (2.13) 

where d3v = d x d y d z  e%t 2 is the proper  three volume. Here the lower limit 
in the integral (2.13) is taken as z 0 f rom where O starts to become nonzero 
because unlike the spherical case here there is no compelling reason to 
choose an origin. Further, we integrate over dx and dy over the range of 
volume 0 to 1. Similarly, the total charge Q may  be given by 

Q = c 2 = f4~rod3v + Q ( z  o) 

Let us suppose that p = 0 outside some exterior world tube of flow 
lines defined by z = z 0 in the electrovac exterior. We have from equation 
(2.13), m = M (a constant) and c = const. Two coordinates are defined such 
that 

a = a ( z ,  t), T =  T(z ,  t) 

such that 

IF= ( 2 M /  a - c / a 2) -1(o/2 -- 2 M /  II + C / O~ 2) (2.14) 

T'=~a'(2M/a-c/a2)-'(a2-2M/a+c/a2) -~/2 (2.15) 

where the integrability condition of T is satisfied via the field equations. In 
the (T,6)  coordinates the metric becomes 

d~2__ 6 2 _ _  da2 a2(dx2+dy2)  2 M a - c  d T  2 (2.16) 
2 M a - c  a2 

This metric is in fact a special case of charged analog of the Kasner  
universe (Kasner, 1925). 

When c = 0  we get the charge-free solution found by Liang. In this 
case a is timelike for all positive values of M and hence the metric is time 
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dependent. So in order to have a static exterior solution the mass M must 
be negative. This assumption is unphysical. However, since c >0 ,  a is 
timelike when 2 M a > c  and spacelike when 2Ma<c .  Hence we cannot 
have a globally static exterior solution. It should be noted that the 
hypersurface a = c / 2 M  is null and plays the role of a Killing horizon. For  
a > c / 2 M  the Killing vector is spacelike, while for a < c / 2 M  it is timetike. 
However, for the unchanged case, i.e., when c =0,  the Killing vector is 
always spacelike for M > 0. 

3. SPHERICAL SYMMETRY 

Using comoving normal coordinates the spherically symmetric line 
element may be written in the form 

ds 2= dt 2 -  e2q~ dr2 - R 2 d ~ 2 (3.1) 

where tp = ~(r, t), R = R(r, t). We get from the field equations 

e * = R ' / k ( r )  (3.2) 

1 "2 m(r) c(r) =E(r)  (3.3) 
-i R -  R 

where E(r ) - - ( l / 2 ) ( k2 -1 )>>. -1 /2  and c is a function of r alone, con- 
nected with electromagnetic field. From the source equation we obtain 

m'(r) 
P = 4 ~rR 2R' (3.4) 

where the symbols have their previous meaning. 
The equation (3.4) gives 

m(r) = (rpkdav (3.5) 
J0 

where d3v = 4~rR 2e* dr. 
For the exterior we get from equation (3.4) m = M, (a constant) and 

c = const. 
We then define new coordinates 

R =  R(r, t) ,  T= T(r, t)  
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~= (1 + R2-2M/R + 2c/R2) 1/2 
(3.6a) 

1 - 2 M / R + 2 c / R  2 

RR'  
T' = (3.68) 

(1 -2M/R + 2c/R2)(1 + k 2 - 2 M / R  +2c/R ~) 

where the integrability condition is again ensured via the field equations. 
In the new coordinates the metric reduces to 

ds2 = ( 1 - 2 M / R + 2 c / R 2 ) d T 2 - ( 1 - 2 M / R + 2 c / R Z ) - ~ d R 2 - R 2 d f ~  2 

(3.7) 

which is the well-known Reissner-Nordstr6m solution. 
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